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Abstract: In the next years the luminosity of the LHC will be significantly increased. Therefore a much higher accuracy of beam profile measurement than actually achievable by the current
wire scanner is required. The new performance demands a wire travelling speed up to 20 m.s1 and a position measurement accuracy of the order of 1 um. The vibrations of the mechanical
parts of the system, and mainly the vibrations of the thin carbon wire have been identified as the major error sources contributing to the wire position uncertainty. Therefore the understanding
of the wire vibrations has been given high priority for the design and operation of the new device. The most challenging and innovative development has been the measurement of the wire
vibrations based on the piezoresistive effect of the wire itself. An electronic readout system based on a Wheatstone bridge is used to measure the variation of the carbon wire resistance, which
is directly proportional to the wire elongation caused by the oscillations. The deformation of the wire support during the movement (measured through semiconductor strain gauges installed
on the mechanical parts of the system) and the angular information of the fork (given by a resolver) will be used as inputs of the dynamic model of the wire. The final parameters of the
dynamic models will be tuned through the comparison of the simulated vibration amplitudes and the wire resistance variation measurements.
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Experimental setup
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Calibration
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